¶¯Á¦ÏµÍ³ÌÖÂ۰ࡪ¡ªA rescaled expansiveness for flows
Ö÷¡¡Ìâ: ¶¯Á¦ÏµÍ³ÌÖÂ۰ࡪ¡ªA rescaled expansiveness for flows
±¨¸æÈË: ÎÄÏþ (±±¾©º½¿Õº½Ìì´óѧ)
ʱ¡¡¼ä: 2017-10-25 15:10-17:10
µØ¡¡µã: ¶þ½Ì408
Abstract: We introduce a new version of expansiveness for flows. Let M be a compact Rie-mannian manifold without boundary and X be a C1 vector eld on M that generates a flow ¦Õt on M. We call X rescaling expansive on a compact invariant set ¡Ä of X if for any € > 0 there is ¦Ä> 0 such that, for any x; y ¡Ê¡Ä and any time reparametrization ¦È : R¡ú R, if d(¦Õt(x); ¦Õ(t)(y)) ¡Ü¦Ä ¡ÎX(¦Õt(x))¡Î for all t ¡Ê R, then ¦Õ(t)(y)¡Ê¦Õ[-€;€](¦Õt(x)) for all t ¡Ê R. We prove that every multisingular hyperbolic set (singular hyperbolic set in particular) is rescaling expansive and a converse holds generically. This is a joint work with Lan Wen.